ECS455 Chapter 1 Review & Introduction

1.3 Wireless Channel (Part 1)

Office Hours: BKD 3601-7 Tuesday 10:00-11:30 Thursday 9:30-11:30

Wireless Channel

- A Large-scale propagation effects
 - A.1. Path loss
 - A_2 . Shadowing
 - Typically frequency independent $\frac{P_{r}}{P_{r}}$ (dB)
- **Small-scale** propagation effects
 - Variation due to the constructive and destructive addition of multipath signal components.
 - Occur over very short distances, on the order of the signal wavelength.

A.1 Path loss

- Caused by
 - dissipation of the power radiated by the transmitter
 - effects of the propagation channel
- Models generally assume that it is the same at a given transmit-receive distance.
- Variation occurs over very large distances (100-1000 meters)

A 2Shadowing

- Caused by obstacles (large objects such as buildings and hills) between the transmitter and receiver.
 - Think: cloud blocking sunlight
- Attenuate signal power through absorption, reflection, scattering, and diffraction.
- Variation occurs over distances proportional to the length of the obstructing object (10-100 meters in outdoor environments and less in indoor environments).

Simplified Path Loss Model

- *K* is a unitless constant which depends on the $\alpha \otimes \beta$ only approximations to the antenna characteristics and the average cell planning channel attenuation
- d_0 is a reference distance for the antenna farfield
 - Typically 1-10 m indoors and 10-100 m outdoors.
- γ is the **path loss exponent**.
 - 2 in free-space model
 - 4 in two-ray model [Goldsmith, 2005, eq. 2.17]

Environment	γ range
Urban macrocells	3.7-6.5
Urban microcells	2.7-3.5
Office Building (same floor)	1.6-3.5
Office Building (multiple floors)	2-6
Store	1.8-2.2
Factory	1.6-3.3
Home	3
[Goldsmith, 2005, Table 2.2]	

Captures the essence of

real channel anyway!

signal propagation without

Doppler Shift: 1D Move • At distance d = 0, suppose we have A. cos (217 + + \$) $A_0 \cos(2\pi ft + \phi)$ • At distance *r*, we have Time to travel a distance of r $A_r \cos\left(2\pi f\left(t - \frac{r}{c}\right) + \phi\right) \xrightarrow{\left(2\pi f\left(1 - \frac{1}{c} \frac{d}{dt}r(t)\right)}{\left(\frac{1}{dt}\right)}$ • If moving, r becomes r(t). $\rightarrow A_{rit}$, $cos(2\pi f(t - \frac{r(t)}{c}) + \phi)$ • If moving *away* at a constant velocity v, then $r(t) = r_0 + vt$. $A_{r(t)}\cos\left(2\pi f\left(t-\frac{r_0+vt}{c}\right)+\phi\right) = A_{r(t)}\cos\left(2\pi \left(f-\frac{v}{c}\right)t-2\pi f\frac{r_0}{c}+\phi\right)$ **Frequency shift**

7

Doppler Shift: With angle Rx speed = v(t). At time t, cover distance $\ell(t) = \int_{0}^{t} v(\tau) d\tau$

$$r(t) = \sqrt{d^{2} + \ell^{2}(t) - 2d\ell(t)\cos\theta}$$

$$\frac{d}{dt}r(t) = \frac{2\ell(t) - 2d\cos\theta}{2\sqrt{d^{2} + \ell^{2}(t) - 2d\ell(t)\cos\theta}}v(t)$$

$$\frac{d}{dt}r(t)\Big|_{t=0} = -\cos\theta v(0)$$

$$f_{\text{new}}(t) = f - \frac{1}{\lambda}\frac{d}{dt}r(t)$$

$$f_{\text{new}}(0) = f + \frac{1}{\lambda}\cos\theta v(0)$$
Frequency shift

Doppler Shift: Approximation

$$r(t) \approx d - \ell(t) \cos \theta$$

$$r(t) \approx d - \ell(t) \cos \theta$$

$$\frac{d}{dt} r(t) \approx -v(t) \cos \theta$$

$$\frac{d}{dt} r(t) \approx -v(t) \cos \theta$$

$$f_{new}(t) \approx f + \frac{v(t) \cos \theta}{\lambda}$$

$$\Delta f = \frac{v \cos \theta}{\lambda}$$
For typical vehicle speeds (75 Km/hr) and frequencies (around 1 GHz), it is on the order of 100 Hz